Trabajo (física)
(Redirigido desde «Trabajo mecanico»)
Trabajo (W) | ||
---|---|---|
Trabajo realizado por una fuerza constante. | ||
Magnitud | Trabajo (W) | |
Definición | Producto de la fuerza ejercida sobre un cuerpo por su desplazamiento | |
Tipo | Magnitud escalar | |
Unidad SI | Julio (J) | |
Otras unidades | Kilojulio (kJ) Kilográmetro (kgm) | |
[editar datos en Wikidata] |
En mecánica clásica, se dice que una fuerza realiza trabajo cuando altera el estado de movimiento de un cuerpo. El trabajo de la fuerza sobre ese cuerpo será equivalente a la energía necesaria para desplazarlo1 de manera acelerada. El trabajo es una magnitud físicaescalar que se representa con la letra (del inglés Work) y se expresa en unidades de energía, esto es en julios o joules (J) en el Sistema Internacional de Unidades.
Ya que por definición el trabajo es un tránsito de energía,2 nunca se refiere a él como incremento de trabajo, ni se simboliza como ΔW.
Índice
[ocultar]El trabajo en mecánica[editar]
Consideremos una partícula sobre la que actúa una fuerza , función de la posición de la partícula en el espacio, esto es y sea un desplazamiento elemental (infinitesimal) experimentado por la partícula durante un intervalo de tiempo . Llamamos trabajo elemental, , de la fuerza durante el desplazamiento elemental al producto escalar ; esto es,
Si representamos por la longitud de arco (medido sobre la trayectoria de la partícula) en el desplazamiento elemental, esto es , entonces el vector tangente a la trayectoria viene dado por y podemos escribir la expresión anterior en la forma
donde representa el ángulo determinado por los vectores y y es la componente de la fuerza F en la dirección del desplazamiento elemental .
El trabajo realizado por la fuerza durante un desplazamiento elemental de la partícula sobre la que está aplicada es una magnitud escalar, que podrá ser positiva, nula o negativa, según que el ángulo sea agudo, recto u obtuso.
Si la partícula P recorre una cierta trayectoria en el espacio, su desplazamiento total entre dos posiciones A y B puede considerarse como el resultado de sumar infinitos desplazamientos elementales y el trabajo total realizado por la fuerza en ese desplazamiento será la suma de todos esos trabajos elementales; o sea
Esto es, el trabajo viene dado por la integral curvilínea de a lo largo de la curva que une los dos puntos; en otras palabras, por la circulación de sobre la curva entre los puntos A y B. Así pues, el trabajo es una magnitud física escalar que dependerá en general de la trayectoria que una los puntos A y B, a no ser que la fuerza sea conservativa, en cuyo caso el trabajo resultará ser independiente del camino seguido para ir del punto A al punto B, siendo nulo en una trayectoria cerrada. Así, podemos afirmar que el trabajo no es una variable de estado.
No hay comentarios:
Publicar un comentario